
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Slight Heterogeneity in Multi-core Architecture:
An Experimental & Comparative Study

Abdullah Al Mamun, Hilal H. Nuha, Sultan Anwar, Hassan Ali

Abstract— there is a growing consensus that heterogeneous multicores are the future of CPUs. These processors would be composed of
cores that are specifically adapted or tuned to particular types of applications and use cases, thereby increasing performance. The move
from homogeneous to heterogeneous multicores causes the design space to explode, however. An architect of a heterogeneous processor
must make design decisions per processor core rather than once for the entire processor as before. Currently, there are no methods for
handling this design complexity to yield a processor that performs well for real workloads. As a step forward, we propose weak
heterogeneity. A weakly heterogeneous processor is one whose cores are different, but not significantly so. The cores share an ISA and
major microarchitectural features, differing only in minor details. Limiting the design space in this way allows us to explore the
heterogeneous space without becoming overwhelmed by its s ize. We show preliminary results suggesting that a design space so
constrained still has interesting trade-offs among performance, power consumption, and area.

Index Terms— Multicore, Processor, GPU, Microprocessor, Cache, Gem5, Processing Simulation.

—————————— ——————————

1 INTRODUCTION
ncreasing processor performance by adding more cores on a
single chip is not a long term solution since chip tempera-
ture will restrict the number of core. Because of power limit,

multicore scaling grows no more than 50% even though 8nm
is used. Heterogeneous processors can solve this restriction
partially. Each different CPU will have a different specification
so that Heterogeneous processors will choose the suitable CPU
for a certain job. Weakly Heterogeneous design is one of the
initial approaches for Heterogeneous CPU. [1] Weak Hetero-
geneous Design means a multicore processor with slightly
different cores. The cores use similar ISA and micro-
architecture but different in small details. A typical multicore
architecture is shown in fig (1).Increasing processor perfor-
mance by adding more cores on a single chip is not a long
term solution since chip temperature will restrict the number
of core. Because of power limit, multicore scaling grows no
more than 50% even though 8nm is used. Heterogeneous pro-
cessors can solve this restriction partially. Each different CPU
will have a different specification so that Heterogeneous pro-
cessors will choose the suitable CPU for a certain job. Weakly
Heterogeneous design is one of the initial approaches for
Heterogeneous CPU.[1] Weak Heterogeneous Design means a
multicore processor with slightly different cores. The cores use
similar ISA and micro-architecture but different in small de-
tails. A typical multicore architecture is shown in fig (1). We
wish to evaluate a weakly heterogeneous design perfor-
mance by performing benchmark in gem5 simulator. In our

case, we wish to implement multicore with the same ISA but
different cache size.

2 GEM5 SIMULATOR AND OTHER SIMULATORS
We choose gem5[2] because of its supports on many types of
ISA. The gem5 simulator is a fusion of the best features of the
M5 [3] and GEMS [4] simulators. GEMS provide a simulation
with a detailed and flexible memory system. M5 gives us a
highly configurable simulation framework, multiple ISAs, and
diverse CPU models. Nowadays, gem5 supports most popular
ISAs (x86, ARM, ALPHA, MIPS, Power, and SPARC).

I

————————————————

Abdullah Al Maun, Hassan Ali and Sultan Anwar are currently pursuing
masters degree program in Computer engineering in King Fahd University
of Petroleum & Minerals, Dammam,KSA. PH-0594968041. E-mail:
g201403680@kfupm.edu.sa
Hilal H. Nuha is currently pursuing Phd degree program in electric power
engineering in King Fahd University of Petroleum & Minerals, Dammam,
KSA. E-mail: g201309210@kfupm.edu.sa

Fig. 1. Typical Multicore processor.

1235

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 10, October-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 EXPEIMENTAL SETUP
Simulations are based on the x86 detailed and arm_detailed
processor model distributed with gem5. As benchmark, we
will use matrix multiplication and 8-Queens problem, and
evaluate the running time performance. We run the simulation
in SE mode.

• X86 2 cores, CPU type: detailed, combination
– P0: Both core 64kB, associativity 2.
– P1: Core 1: 32kB, Core 2: 64 kB, associativity 2.
– P2: Core 1: assoc 2, Core 2: assoc 1, both: 64kB
– P3: Core 1: assoc 1, Core 2: assoc 1, both: 64kB
• ARM 2 cores, CPU type: arm_detailed, combination
– P4: Both core 64kB, assoc 2
– P5: Core 1: 32kB, Core 2: 64 kB
– P6: Core 1: assoc 2, Core 2: assoc 1, both: 64kB
– P7: Core 1: assoc 1, Core 2: assoc 1, both: 64kB
We used gem5 hello world, matrix multiplication with di-

mension 32x32 and N-Queen Problem where N=8 as bench-
mark program.

4 RESULT AND ANALYSIS
4.1 Processor Run Time

We conduct some initial experiments. We apply some ISA
with different configurations and different benchmark pro-
gram. We have ARM, x86, and x86 with 2 cores. For bench-
mark program we have helloworld, matmul1 is a 32 x 32 ma-
trix multiplication, and matmul2 is a double 32x32 matrix
multiplication. As performance evaluation, we evaluate Num-
ber of tick which represent the clock cycle of the CPU.

 Run Time comparison among many different processor archi-
tectures are shown in fig 2. We normalized the running Num-
ber of tick for each benchmark. One most important result is
x86 core 2 on matmul1 and matmul2. As shown in fig 2, indi-
cates that x86 with two core execute double matrix multiplica-
tion almost as fast as single core executing single matrix mul-
tiplication. Both cores work simultaneously to calculate the
matrix calculation. Each matrix is distributed to each core and
each core works on a matrix as if single core works at single

matrix. In this paper, we did performance evaluation for 8-
Queens problem for different processor architecture individu-
ally. The runtime of processors x86 and ARM are shown re-
spectively in fig 3 and fig 4, clearly indicates that processor 3
takes much time whereas others takes only half of P3. In con-
trast, P4 and P5 have similar run time in case of processor
ARM. However, in both processors, changing the value of as-
sociativity has no impact on run time. Only 8 queen problems
are considered as benchmark for all following performance
test.

4.2 Miss Rate (Data Cache)
To evaluate miss rate, we consider data cache only because of
having some modification on configuration for data cache.
When processor want to read and write data from cache exe-
cuting load and store instructions, if cache hit happen then we
have no miss processor gets data and continue its next execu-
tions. Miss happens when processors don’t get data or write
data.

Fig. 2. Run Time Comparision.

Fig. 3. Run Time of Processor x86

Fig. 4. Run Time of Processor ARM.

1236

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 10, October-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

4.3 Number of Instructions
Number of instruction to be executed is very important to cal-
culate processor performance. It is depends on which ISA is
used. In this test, we count number of instructions in both pro-
cessors x86 and ARM that are shown below in fig 7 and 8.
However, in case of x86 all processor execute same number of
instructions for a given benchmark program on the other hand
core 1 and core 0 of ARM are slightly different than x86.

4.4 CPU Clock Cycle
It refers to the frequency of multi core processor. The clock
cycle is different with the size of cache in processor. If miss
rate is growing high then CPU clock rate becomes also high.
The CPU clock time is shown in fig 9 and 10 for both proces-
sors. Highest CPU time needs for P3 in x86 and lowest CPU
time taken for P7 of ARM.

Fig. 5. Cache Miss Rate of processor x86

Fig. 6. Cache Miss Rate of processor ARM.

Fig. 7. x86 Number of Simulated Instruction

Fig. 8. ARM Number of Simulated Instruction

Fig. 9. CPU clock cyple of processor x86

Fig. 10. CPU clock cycle of processor ARM

1237

IJSER

International Journal of Scientific & Engineering Research Volume 6, Issue 10, October-2015
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

4.5 Clock per Instruction CPI
CPI is most important indicator to measure performance of a
processor. It plays an important role while comparing among
different processor. According to fig 11 and fig 12, ARM has
less CPI to complete 8-Queen problem than x86 that is only 1.
It is a good indication of fastness.

4.6 Idle Cycle
It refers the total number of cycles that the CPU has spent un-
scheduled due to idle. As we can see in fig 13 and fig 14, clear-
ly observed that core 0 is busier than core 1.

4 CONCLUSION
Based on our simulation, it is possible to put different configu-
ration for each core without significantly affecting the perfor-
mance. We want to continue our investigation on this project.
We will different configuration using more advance bench-
mark and more combinations in future.

REFERENCES

[1] Tomusk, Erik, and Michael O'Boyle. "Weak heterogeneity as a way of adapt-
ing multicores to real workloads." Proceedings of the 3rd International Work-
shop on Adaptive Self-Tuning Computing Systems. ACM, 2013.

[2] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2 (2011): 1-7.

[3] Binkert, Nathan L., et al. "The M5 simulator: Modeling networked systems."
IEEE Micro 26.4 (2006): 52-60.

[4] Martin, Milo MK, et al. "Multifacet's general execution-driven multiprocessor
simulator (GEMS) toolset." ACM SIGARCH Computer Architecture News
33.4 (2005): 92-99.

[5] Esmaeilzadeh, Hadi, et al. "Dark silicon and the end of multicore scaling."
Computer Architecture (ISCA), 2011 38th Annual International Symposium
on. IEEE, 2011.93. (Thesis or dissertation)

Fig. 11. CPI of processor x86

Fig. 12. CPI of processor ARM

Fig. 13. Idle of processor x86

Fig. 14. Idle cycle of processor ARM

1238

IJSER

